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Global methods in classical mechanics.
The Euler–Lagrange equation
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Starting from a smooth manifold Q as configurational space, the intrinsic form of Euler–
Lagrange equation is derived using a differential geometrical approach in order to obtain a
relation valid on the whole tangent bundle TQ that constitutes the phase space of a generical
mechanical system.

1. Introduction

Quantum mechanics is the main tool, among chemical physicist, to investigate
molecular motions and transformations. Nevertheless, when the freedom degrees num-
ber of the system increases, quantum mechanical calculations become quite difficult to
perform. In the last years, due to this kind of problem, classical mechanics is experi-
encing an increasing popularity for it is possible to perform calculations for many body
problems and to obtain results in good agreement with experiments [2,4,7]. The prob-
lem of correspondence of classical to quantum mechanics has brought much discussion
[3,9] and, at present, there does not exist a definitive answer.

Since Poincaré’s pioneering work [10] it is well established that, generally, for
a mechanical problem the phase space is a non-linear space. As a matter of fact, the
mathematical model for mechanics consists of a smooth manifold that has a special
geometrical structure called symplectic structure, together with a vector field [1]. This
model admits a coordinate system only locally, and so it is more appropriate to use
intrinsic methods to study a mechanical system.

In the present paper, after some brief preliminaries, the Euler–Lagrange equation,
corner-stone of classical mechanics, is derived in the light of these methods. Useful
applications of this approach to perform molecular dynamics simulations and analy-
sis of vibrational spectra of polyatomic molecules will be the object of forthcoming
papers.
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2. Preliminaries

We review here, briefly, some basic concepts of differential geometry, referring
the reader, for more details, to some texts on the argument [1,6].

2.1. Smooth manifolds

Let M be a set and m a positive integer. Any injection

ξ :U ⊆M → Rm

is called an m-dimensional (local) chart on M . Let

ξ :U ⊆M → Rm and η :V → Rm

be two m-dimensional charts on M . They are said to be C∞-related to each other if
U ∩ V = ∅ or, when U ∩ V 6= ∅, if their transitions functions

η ◦ ξ−1 : ξ(U ∩ V )→ Rm and ξ ◦ η−1 : η(V ∩ U )→ Rm

are C∞.
A collection C of m-dimensional charts is said to be an m-dimensional atlas on

M if the domains of the charts belonging to C are a covering of M .
An m-dimensional atlas C is said to be C∞-differentiable if, for every ξ ∈ C,

ξ is C∞-related to every chart of C.
An m-dimensional C∞-differentiable atlas C is said to be complete if each

m-dimensional chart C∞-related to every chart of C belongs to C.
A complete m-dimensional C∞-differentiable atlas is also called an m-dimen-

sional differential structure on M .
A set M equipped with an m-dimensional differential structure A is called an

m-dimensional smooth manifold. All the charts of A are called admissible charts on
M and their domains are the coordinate domains on M .

2.2. Smooth mappings

Let (M ,AM) and (N ,AN ) be smooth manifolds with m = dimM and n =
dimN and

Φ :M → N

a mapping of M in N . Let p ∈ M . If ξ ∈ AM is a chart with domain U 3 p and
η ∈ AN is a chart with domain V ⊇ Φ(U ), the coordinate expression of Φ about p is
given by

Φηξ := η ◦Φ ◦ ξ−1 : ξ(U )→ Rn, ξ(p)→ η
(
Φ(p)

)
.

Φ is said to be C∞-differentiable at p if there exists a coordinate expression Φηξ

about p, which is C∞ at ξ(p). Φ :M → N is called a smooth mapping if it is
C∞-differentiable at every point of M .
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2.3. Tangent space and tangent bundle

Let M be a smooth manifold, FM the ring of real-valued smooth functions on
M and p ∈M . Any R-linear map

v : FM → R,

which obeys Leibnitz rule at p,

v(f , g) = v(f )g(p) + f (p)g(f ) (∀f , g ∈ FM ),

is called a derivation of FM at p. Let TpM be the set of all the derivations of FM
at p. Putting, for any f ∈ FM ,

(u+ v)f := u(f ) + v(f ) and (av)f := av(f ) ∀a ∈ R,

TpM is given a structure of vector space. TpM , endowed with the above structure,
is called the tangent space of M at p, and any v ∈ TpM , a tangent vector of M at p.
It is easy to prove that dim TpM = dimM .

Let TM be the disjoint union of all the tangent spaces of M . Any admissible
chart on M determines a 2m-dimensional natural chart on TM . Natural charts set up
a 2m-dimensional differential structure on TM .

TM – endowed with its natural differential structure – is called the tangent bundle
of M .

2.4. Cotangent space and cotangent bundle

Let M be a smooth manifold. At any p ∈ M , cotangent space T∗pM is the
m-dimensional vector space, dual of TpM , whose elements, called covectors, are the
linear forms on TpM . Let T ∗M be the disjoint union of all the cotangent spaces
of M . Any admissible chart on M determines a 2m-dimensional natural chart on
T ∗M . Natural charts set up a 2m-dimensional differential structure on T ∗M .

T ∗M – endowed with its natural differential structure – is called the cotangent
bundle of M .

2.5. Smooth curves

Let

γ : I →M

be a smooth mapping of an open interval I ⊆ R in a smooth manifold M . γ is said
to be a smooth curve, or motion, in M and γ(I) its orbit. The time derivative of γ at
t ∈ I , γ̇(t), is an element of Tγ(t)M . It is said to be the tangent vector of γ at point
γ(t), or the velocity of γ at instant t.
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3. Geometrical tools

Let M be a smooth manifold.
The tangent and cotangent bundle projections onto M will be denoted by

τM : TM →M and πM : T ∗M →M ,

respectively. If

Ψ :M → N

is a smooth mapping, then

TΨ : TM → TN

is the tangent mapping of Ψ. It satisfies the condition

τN ◦ TΨ = Ψ ◦ τM .
The key role in the geometry of the tangent bundle TM is played [5,8,11] by vertical
lifting

ν : TM ×M TM → TTM ,

whose restriction νv to the fiber (v) × TmM ∼= TmM over any v ∈ TM (with
m = τM (v)) maps isomorphically TmM onto its own tangent space at v.

On the one hand, ν transforms the tangent mapping of τM into the almost tangent
structure S : TTM → TTM defined, for any v ∈ TM , by

Sv := S|TvTM := νv ◦ TvτM .
On the other hand, ν transforms the identity mapping of TM into the dilation

vector field ∆ : TM → TTM defined, for any v ∈ TM , by

∆(v) := νv(v).

The vertical tangent bundle V τQ, defined as the set of all vectors x ∈ TTM
tangent to the fibres of τQ, is then characterized by S(x) = 0.

The second tangent bundle T 2M , defined as the set of all vectors x ∈ TTM
satisfying TτM (x) = τTM (x), is characterized by S(x) = ∆(τTM (x)).

The horizontal cotangent bundle V 0τM , defined as the set of all covectors ξ ∈
T ∗TM annihilating V τM , is characterized by ξ ◦ SπTM (ξ) = 0.

Moreover, we shall use the following vector bundle morphism:

V 0τM
//

$τM

��
πTM

T ∗M

��
πM

TM //τM
M

where $τM is defined, for any ξ ∈ V 0τM , by ξ = $τM (ξ) ◦ TvτM .

The restriction V ◦v τM
$τM−→ TvτM is a vector isomorphism.
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4. The Euler–Lagrange equation

Let (Q,L) denote an n-dimensional smooth manifold Q, endowed with a La-
grangian

L :P = TQ → R,

that is, a real valued smooth function defined on the phase space P of a mechanical
system whose configurational space is Q. For any smooth curve

γ : I → Q

(I ⊆ R being an open interval), the action integral in (t1, t2) ⊆ I is given by

At1t2 (γ) :=
∫ t2

t1

L ◦ γ̇ dt

(where γ̇ : I → TQ denotes the tangent lifting of γ).
In order to study the behaviour of At1t2(γ), when γ is let to vary within a family of

nearby smooth curves, we shall consider a smooth variation (ϕs ◦ γ)s∈R of γ defined
by any one-parameter group (ϕs)s∈R of transformations of Q, whose infinitesimal
generator ζ vanishes at γ(t1) and γ(t2). Recall that the tangent lifting of ζ , i.e., the
infinitesimal generator Z of (Tϕs)s∈R, is τQ-related to ζ and satisfies

(SZ )γ̇(ti) = νγ̇(ti) ◦ Tγ̇(ti)τQ(Zγ̇(ti)) = νγ̇(ti)(ζγ(ti)) = 0.

Corresponding to the transformed curves (ϕs◦γ)s∈R, there is the action s→ At2t1 (ϕs◦γ),
whose rate – starting from ϕ0 ◦ γ = γ – is described by the first variation(

d
ds
At2t1 (ϕs ◦ γ)

)
s=0

=

∫ t2

t1

(
d
ds
L ◦ Tϕs ◦ γ̇

)
s=0

dt

=

∫ t2

t1

〈(
d
ds
Tϕs ◦ γ̇

)
s=0

∣∣∣∣ dL ◦ γ̇〉 dt

=

∫ t2

t1

〈Z|dL〉 ◦ γ̇ dt =

∫ t2

t1

ZL ◦ γ̇ dt = −
∫ t2

t1

[
L̃
]
◦ γ̈ · v(t) dt

(using the Poincaré–Cartan 2-form associated with L, that is, ω := −d dSL). Here

v(t) :=
dqhs (t)

ds

∣∣∣∣
s=0

∂

∂qh

∣∣∣∣
γt

∈ Tγ(t)Q

represents the tangent vector of curve s→ (ϕs ◦ γ)(t) at (ϕ0 ◦ γ)(t) = γ(t) and[
L̃
]

:= $τQ ◦ [L],

[L] being the Euler–Lagrange morphism defined by

[L] : T 2Q → V 0τQ, x→ dEL
(
τ (x)

)
−[ x,
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where EL is the classical kinetic energy associated to L and [ is the musical mor-
phism [1].

Now a smooth curve γ : I → Q is said to be a geodesic of L if it satisfies
Hamilton’s variational principle of stationary action requiring(

d
ds
At2t1 (ϕs ◦ γ)

)
s=0

= 0

for each (t1, t2) ⊆ I and each smooth variation (ϕs ◦ γ)s∈R, whose infinitesimal
generator vanishes at γ(t1) and γ(t2).

Lemma 1. [L] ◦ γ̈ = 0⇔ [L̃] ◦ γ̈ = 0.

Proof. It is sufficient to consider that $τQ is a vector isomorphism. �

Theorem 2. γ is a geodesic of (Q,L) if, and only if, [L] ◦ γ̈ = 0.

Proof. The if condition is trivial.
We shall prove the only if condition by the following reductio ad absurdum. Let

γ be a geodesic and [L] ◦ γ̈(t0) 6= 0 for some t0 ∈ I . Let

ξ :U → B0
r

be a spherical chart with

γ(t0) ∈ U ⊆ Q and x(t0) := ξ
(
γ(t0)

)
= 0 ∈ Br

0 ⊆ Rn.

Let’s assume, e.g., λ1(t0) > 0 (λh, h = 1, . . . ,n, being the components of [L̃] ◦ γ̈ in
ξ).

By continuity, we shall have

x(t) := ξ
(
γ(t)

)
∈ Br/4

0 and λ1(t) > 0

for each t ∈ J , J being a suitably small open interval s.t. t0 ∈ J ⊆ I . For each t ∈ J
and s ∈ (−ε, ε) with ε := r/8, put

xs(t) := x(t) +
[
s
(
cos(t− t0)− cos δ

)]
δ1

with 0 < δ < π/2 s.t. (t1, t2) := (t0 − δ, t0 + δ) ⊆ J and δ1 first vector of canonical
basis in Rn. Notice that (for each t ∈ J and s ∈ (−ε, ε))

xs(t0) =
[
s(1− cos δ)

]
δ1,

xs(t)− xs(t0) = x(t) +
[
s
(
cos(t− t0)− 1

)]
δ1,

whence ∣∣xs(t0)
∣∣= |1− cos δ||s| < 2

(
r

8

)
=
r

4
,
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∣∣6 ∣∣x(t)

∣∣+
∣∣cos (t− t0)− 1

∣∣|s| < r

4
+
r

4
=
r

2
,

and then ∣∣xs(t)∣∣ 6 ∣∣xs(t)− xs(t0)
∣∣+
∣∣xs(t0)

∣∣ < r

2
+
r

4
< r,

that is, xs(t) ∈ Br
0 or, equivalently, γs(t) := ξ−1(xs(t)) ∈ U . This enables us to define

a mapping

(s, t) ∈ (−ε, ε)× J → γs(t) ∈ U ⊆ Q,

which turns out to be a smooth variation of γ with fixed end-points in (t1, t2). The
corresponding infinitesimal variation v :J → P has components in ξ given, at each
t ∈ J , by

d
ds
xs(t)

∣∣∣∣
s=0

=
[

cos(t− t0)− cos δ
]
δ1,

that is,

v1(t) = cos(t− t0)− cos δ,

positive in the interior and vanishing at the end-points of (t1, t2) and

v2(t) = · · · = vn(t) = 0,

therefore (
d
ds
At2t1 (ϕs ◦ γ)

)
s=0

= −
∫ t2

t1

λ1v
1 dt < 0. �

So,

[L] ◦ γ̈ = 0 (1)

is the Euler–Lagrange equation of geodesics and, for any motion γ : I → Q, [L] ◦ γ̈
is the geodesic curvature of γ.

In any admissible chart, that is, locally, Euler–Lagrange equation of geodesics is
expressed by the classical equation

d
dt
∂L

∂q̇h
− ∂L

∂qh
= 0.

We would like to stress that equation (1) has been obtained starting from a generical
Lagrangian that might be, for example, non-regular. Moreover, equation (1) is intrinsic
in the sense that it does not depend on a locally valid coordinate system, but it works
on the whole manifold, a natural place where it is possible to describe the motion of
any mechanical system.
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5. Conclusions

Classical mechanics can be a useful tool in a broad range of theoretical chemistry
applications. Anyway, it has to be used in an adequate manner, keeping in mind that
in most cases phase space is not linear and so admits a coordinate system only locally.
Hence, intrinsic calculus of Cartan has to be preferred to conventional calculus of
Newton.
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